3.1. Logical Form in the Minimalist Programme

In this chapter the Minimalist programme which is proposed in Chomsky (1993) is examined according to Hornstein (1995) where the assumptions underlying the programme are surveyed and LF phenomena are discussed.

We have seen in chapter 1 that various levels of grammatical representation are postulated in GB theory, DS, SS, PF, and LF. In Minimalist Programme it is only the two levels, PF and LF, which interface with other systems of module of language, the Perceptual-Articulatory (PA) system and Conceptual-Intentional (CI) system respectively. PF-representations are derived by PF operations and LF-representations by LF operations, after Spellout, the point at which overt syntactic structures are derived and the derivation splits, and then are input to PA system and CI system respectively. Accordingly, any effect of well-formed condition in GB theory is to meet on output representations at these two levels. Specifically, effects of the theta criterion, locality conditions on overt movement, case theory, and the binding theory are all required to meet at LF.\(^1\)

This elimination of DS and SS in Minimalism is closely related with reformulation of movement. LF representations are derived via successive application of movement operations; overt movement before Spellout and covert movement after Spellout. In Minimalist Programme movement is assumed to be triggered only by morphological requirement: all morphological features must be checked in the appropriate functional projections in the course of derivation to meet the principle of full interpretation (PFI), strong features at Spellout, weak features after spell out. The PFI requires that all features which do not directly concern to interpretations at PA system/CI system must have been checked and charged off at LF/PF. This suggests elimination of A′-movement which is characteristic of LF operations in GB, QR and WH-raising, on the reason that such adjunction operations are not morphologically driven with no specific landing site except that it can adjoin to any maximal projection as in May (1985). On the other hand, A′-movement in the syntax, WH-movement, is licensed: firstly it is morphologically driven to move to Spec CP, although it is an A′-position, to have its Q-features checked, and secondly it can be treated as a substitution operation rather than adjunction.

\(^1\) In GB theories the theta criterion is applied at DS, locality at SS, case theory at SS, and the binding theory at SS and LF.
operation suggesting that core syntactic operations do not rely on adjunction. Alternatively, in Minimalist approach scope phenomena are reanalysed in terms of A-movement. In Minimalist approach QPs and NPs are not differentiated, and both of them are assumed to be generated within VP shell, and then move out to Spec Agr positions for case-checking purpose, subjects to Spec AgrS and objects to Spec AgrO, forming A-chains which contain a moved NP and a copy of it. This can be depicted as in (1):

(1) AgrSP

\[\text{AgrS} \]

\[\text{TP} \]

\[\text{AgrOP} \]

\[\text{AgrO} \]

\[\text{VP} \]

Importantly, to be interpreted at the CI interface, all member but one in an A-chain must be deleted according to the PFI. This deletion operation does not obey the sort of Preference Principle, but can be assumed to be subject to Mapping Principle (Diesing (1992)) where definite (d-linked/presupposed) NPs are required to be outside the VP shell. With these assumptions, relative quantifier scope is directly reflected at LF, and identified as is stated in (1) (Hornstein (1995, p. 154)):

(2) A quantified argument Q_1 takes scope over a quantified argument Q_2 iff Q_1 c-commands Q_2 (and Q_2 does not c-command Q_1).

On the other hand, in A'-chains formed by A'-movement, WH-movement, the Preference Principle is applied (Chomsky (1993)), which suggests to delete, all things being equal, contentful expressions from A'-position. In Hornstein (1995) this effect is interpreted as follows: it is a preference for interpreting a contentful expression in A-positions. That is, since QPs exercise their semantic power from A-positions, so do WHs like other QPs by reconstructing to A-positions at LF.

There is one more instantiation of chains which is assumed in Minimalism, head movement (X') chains. However, I do not refer to it here.
Quantifier Interaction in GB and Minimalism

Quantifier Scope

Let us see how this approach deals with scope phenomena. (4-1) is the LF-representation after case checking for the ambiguous sentence (3), and (4-2) indicates the deletion possibilities (Hornstein (1995, p. 155)):

(3) Someone attended every seminar
(4-1) 1. AgrS Someone [TP Tns AgrO every seminar [VP someone [VP attend every seminar]]]]
(4-2) 2a. AgrS Someone [TP Tns AgrO every seminar [VP (someone) [VP attend (every seminar)]]]]
 b. AgrS Someone [TP Tns AgrO (every seminar) [VP (someone) [VP attend every seminar]]]]
 c. AgrS (Someone) [TP Tns AgrO (every seminar) [VP someone [VP attend every seminar]]]]
 d. AgrS (Someone) [TP Tns AgrO every seminar [VP someone [VP attend (every seminar)]]]]

When Diesing’s Mapping Principle is applied, (4-4b,c) are not interpretable at the CI interface, since a universal quantifier every is a definite, and is required to be outside the VP shell. Thus, only (4-4a,d) are legitimate LF-representations for (3) and are interpreted according to (2): (4-4a) represents the wide scope reading for someone, and (4-4d) for every seminar. In GB terms (4-2a,d) can be represented in (5a,b) respectively:

(5) a. [someonei [every seminarj [ti attend tj]]]
 b. [ti [every seminar, [someonei, attend ti]]]

This LF structures in (5) are ill-formed within GB theory, since ti is not properly governed in (5a), nor c-commanded in (5b), by its antecedent. Nonetheless, both are legitimate in Minimalism. That is, no such output conditions are needed, but only derivational constraints to form proper chains are required in Minimalism: the most economical step movement must take, all morphological features must be checked etc. We can see that chains are formed being restricted by locality condition in the course of derivation.

This approach also properly correlates pronominal binding with relative quantifier scope. To see this, consider the examples below (ibid. p. 158):

(6) Someone played every piece of music you know
(7) Someone played every piece of music he knew

While (6) is ambiguous, (7) is not with only the wide scope reading for someone where there is one musician who played all pieces he knew. The LF structure before deletion for (7) can be represented in (8) (ibid. p. 158):

(8) [AgrS Someone [TP [AgrO every piece of music he knew] [VP someone [VP played every piece of music he knew]]]]

Adopting the Mapping Principle, the every-phrase must be outside of the VP-shell. If we
Yoshiko Umemori

delete someone in Spec AgrS, it gives the wide scope reading for the every-phrase where the pronoun he in the every-phrase is not bound by someone because someone does not c-command he. This, however, is not the reading indicated in (7). If we delete someone in Spec VP instead, we can get the wide scope reading for someone which c-commands, therefore can bind, he in the every-phrase from Spec AgrS.

WH / Quantifier Interactions

In Hornstein (1995) as an analysis for WH/QP interaction in terms of Minimalism, Chierchia (1991) is introduced. Consider next the examples is (9) and (10) (Hornstein (1995, p. 112)):

(9) What did everyone say
(10) Who said everything

In the GB style approach of May (1985), subject/object asymmetry concerning WH/QP interactions, appearing in these examples, is explained on the basis of A’-operation, WH-movement and QR, and ECP, the well-formedness condition for the distribution of empty categories: since the Scope Principle is applied to the LF-representation (11), it gives the sentence (9) two different readings, whereas, for (12) the same QR operation induces an ECP violation, so that everything can adjoin only to VP, and thus have only narrow relative scope (ibid. p. 112 for (12)):

(11) What [everyone, [t, say, t]]
(12) Who, [everything, [t, said, t]]

In Chierchia’s analysis the interpretive asymmetry between (9) and (10) is explained not in terms of a syntactic scope relation but in terms of WCO structures. Let us consider the examples below (ibid. pp. 112-3)):

(13)- 1. Who does everyone love
(13)- 2a. Mary
 b. His mother
(14)- 1. Who does every linguist admire?
(14)- 2a. His advisor
 b. Lasnik admires Chomsky, Barss admires Higginbotham and Santorini admires Kroch
(15)- 1. Who does no linguist admire?
(15)- 2. His mother

The question (13-1) allows two types of answer, an ‘individual’ (i-) answer in (13-2a) and a ‘functional’ (f-) answer in (13-2b), and in the question (14-1) a pair-list answer in (14-2b) is also possible. Importantly, the question (15-1), although it has a functional answer, resists a
pair-list answer. The point here is the opposition between an i-answer and a f-answer, and the lack of the pair-list answer in a question with the f-answer: observing more closely, we note that in f-answer, say in (13-2b), a pronoun him maps a person to that person’s mother, and the functional answer cannot be considered simply as ‘a shorter version’ (ibid. p. 113) of a pair-list answer. Generally, the meaning of a question can be identified with the set of true answers for it. Thus, for (13-1), we have (16) (ibid. p. 113)):

(16) ?{P: P is true and for some x: P = everyone loves x}

However, this assigns only the i-answer. To obtain the f-answer, the interpretation for a question can be indicated as in (17) (ibid. p. 113)):

(17) ?{P: P is true and for some F, P = (every X loves F(X))

For this interpretation, the LF phrase marker in (18-1) is obtained, which contains a variable in object position bound by a WH-expression in subject position (cf. ibid. p. 113)):

(18)-1. Whoi[everyone,t[loves [pro,t],]]
(18)-2 a. *(Who) [everyone, [t [loves who]]]
 b. [Who [everyone, [t [loves (who)]]]

‘i’ is the ‘function’ (f-)index, and a f-indexed variable is bound by a WH-expression in Comp. ‘j’ is the ‘argument’ (a-)index, and an a-indexed variable can act as a pronoun bound by a subject NP to give the functional answer by mapping one individual to another individual. That is, a WH-expression is interpreted as including an implicit pronoun that can be bound by a subject NP.

Then either of the copies in the WH-chain is deleted, prior to interpretation at the CI interface. When the copy in Spec CP is deleted in (18-2a), the question is interpreted as having the functional reading since the implicit pronoun in the object copy is bound by the subject QP everyone in its position, requiring the f-answer. On the other hand, when the object copy is deleted in (18-2b), the question is interpreted as having the individual reading since the implicit pronoun in the copy in Spec CP can not be bound by the subject QP everyone. Thus, the two readings in (9) are explained by the mechanism mentioned above.

According to this approach, the lack of a pair-list reading in (10) is explained as follows (cf. ibid. p. 114)):

(19)-1. Whoj [everything, [pro t], said t]
(19)-2 a. *(Who) [everything, [who said t]]
 b. [Who [everything, [(who) said t]]

3 The idea which underlies this line of approach for WH/QP interaction is the fact that a quantifier in subject position can bind an pronoun in object position, but not vice versa.
Yoshiko Umemori

(19-2a), which should give the functional reading violates WCO since the variable t_j cannot be the antecedent of the pronoun pro_j to its left. Therefore, only (19-2b) is a legitimate interpretation which gives the individual reading for (10).

Concerning the relation between a functional interpretation and a pair-list interpretation, it is suggested that the former is a necessary but not sufficient condition for the latter. Whether a question has both interpretations or not depends on whether an expression which binds the implicit pronoun contained in a WH-phrase can provide a domain so that each element in it can be related with an element in the range. For example, universal quantifiers are such expressions as to provide a domain, making pair-list readings possible.

3.2. Raising Quantifiers without Quantifier Raising ▪ Kitahara (1996)

In Kitahara (1996) the core cases of scopal interactions are explained using a chain-based theory (Aoun & Li (1989, 1991)) together with the theory of feature-checking (Chomsky (1993), Chomsky & Lasnik (1993)).

A Chain-Based Theory of Scope Interpretation

As we have examined the same type of cases so far, the sentence (20) is ambiguous, whereas (21) is not (Kitahara (1996)):

(20) Someone loves everyone.
(21) Who saw everyone?

Given the VP-Internal Subject Hypothesis (e.g., Fukui & Speas (1986), cited in Kitahara (1996)) where subject undergoes NP-movement from Spec VP to Spec IP, (20) has the S-structure in (22) (ibid.):

\[
\text{(22) } \left[\text{CP} \left[\text{IP} \ \text{someone}_1 \left[\text{IP} \ t_1 \ \text{loves everyone}_2 \right] \right] \right]
\]

Applying QR (May (1977, 1985)) to (22), the LF structure (23) is obtained:

\[
\text{(23) } \left[\text{CP} \left[\text{IP} \ \text{someone}_1 \left[\text{IP} \ t'_1 \ \text{everyone}_2 \left[\text{VP} \ t_1 \ \text{loves} \ t_2 \right] \right] \right] \right]
\]

In much the same way, the LF structure (24) is obtained for (21) (ibid.):

\[
\text{(24) } \left[\text{CP} \left[\text{IP} \ \text{who}_1 \left[\text{IP} \ t'_1 \ \text{everyone}_2 \left[\text{VP} \ t_1 \ \text{saw} \ t_2 \right] \right] \right] \right]
\]

On the assumption of this LF-representation, Aoun & Li (1991, cited in Kitahara (1996)) proposed the chain-based analysis which we have seen in chapter 2, repeated in (25) for convenience (ibid.).

4 This section is taken from a previous assignment of the same title.
A variable must be bound by the most local potential A’-binder.
A quantifier A has scope over a quantifier B in case A c-commands a member of
the chain containing B.

This correctly explains the ambiguity in (20); however, it fails to explain the lack of
ambiguity in (21). In (23) since someone, c-commands both members of the chain (everyone, t), and everyone, c-commands a member, t, of the chain (someone, t’, t), both someone and
everyone can take wide-scope over the other. In (6) it leads us to the undesirable result. By this
reasoning, (6) also has the reading where everyone has wide-scope over who, however, this is
not the case. To deal with this, Aoun & Li stipulate that an NP-trace coindexed with X which is
a variable coindexed with wh does not count as a member of the chain concerned; on the other
hand, an NP-trace coindexed with X which is a variable coindexed with QP, is a member of the
chain concerned.

Articulated Chain-Structure and the Scope Principle

Incorporating the VP-Internal Hypothesis and articulated IP-structure (Pollock 1989),
Chomsky (1991, 1993) develops a feature-checking theory by introducing AgrSP and AgrOP,
and the view that subject and object have their Case-features ([+Nom], [+Acc]) checked in their
respective specifier positions. As a result of this feature checking movement, traces are
produced and chains are formed for each movement. According to this chain-formation
algorithm, the LF structures in (26) and (27) are assigned to (20) and (21) respectively (ibid.):

(26) C2:[+Acc]

\[\text{C2:[+Acc]} \]

\[\text{C1:[+Nom]} \]

It is assumed here:
1) Traces left by QR are variables.
2) The definition of potential A-BINDER (Aoun & Li (1991, p.171) cited in Kitahara (1996)) is:
A qualifies as a potential A-binder for B iff A c-commands B, A is in an A-position, and the
Assignment of the index of A to B would not violate any grammatical principle.
3) The definition of C-COMMAND (Reinhart (1976) cited in Kitahara (1996)) is:
Node A c-commands node B if neither A nor B dominates the other and the first branching node dominating A
dominates B.

Aoun & Li (1993) revise this stipulation for all NP-traces.
Note here that under this chain-formation algorithm, two different chains, C1 and C2, can be associated with the single category who.

Assuming these LF-representations, a new version of the Scope Principle is formulated (ibid.):

(28) Scope Principle (revised)
A quantifier X may take scope over a quantifier Y iff X c-commands a member of each chain associated with Y at LF.

This Scope Principle explains the lack of ambiguity in (21) as follows: everyone, c-commands a member, \(t_1 \), of the chain C2(\(t_1', t_1 \)); however, it does not c-command any member of the chain C1 (who, \(t_1' \)). Thus, everyone cannot take wide-scope over who. On the other hand, since who, c-commands both members of the chain C3 (everyone, \(t_2 \), who) can take wide-scope over everyone.

Neither Aoun & Li’s stipulation of a certain type of NP-trace nor the LF rule of QR plays a role in scope interpretation.

This Scope Principle also explains the apparently paradoxical contrast between (29) and (30), when compared to that between (20) and (21) (ibid.):

(29) Someone thinks everyone saw John.
(30) Who do you think everyone saw?

According to the chain-formation algorithm, the LF-structures, (31) and (32), are produced for (29) and (31) respectively (ibid.):

(31) \[CP \{ AgrSP \{ AgrOP \{ VP \{ t _thinks CP \{ AgrSP \{ AgrOP \{ VP \{ everyone _saw _John \} \} \} \} \} \} \} \]
 \[C1[+Nom] \quad C2[+Nom] \]

(32) a. \[CP \{ who _think \{ CP \{ AgrSP \{ AgrOP \{ VP \{ everyone _saw _t \} \} \} \} \} \]
 \[C1[+Wh] \quad C4[+Nom] \]
In (15a), first, wh-movement occurs to check [+Wh] in the overt syntax, forming the chain C1 (who, t1). In (15b), then, the tail of the chain C1 moves to the Spec-AgrOP to check [+Acc] in the LF-component, forming the chain C2 (t1, t'). Also, in (15b) everyone moves to the Spec-AgrSP to check [+Nom] in the LF-component, forming the chain C4 (everyone, t2). As a result, who, c-commands both members of the chain C4, and everyone, c-commands both members of the chain C2 and one member of the chain C3, therefore, both who and everyone can take scope over the other. In (14) someone, c-commands both members of the chain C2, but everyone, c-commands no member of the chain C1, therefore, only someone takes wide-scope over everyone.

Thus, the revised Scope Principle successfully predicts scope interpretations on the basis of LF-representations by the chain-formation algorithm without appealing to stipulations regarding NP-trace nor the LF-rule of QR. Also, from the point of view of Economy of Derivation, the elimination of QR for argument-quantifiers with the structural Case-feature, [+Nom] or [+Acc] is to be welcomed.

Short Analysis

In this section I will pick up the analysis in Tabata (1997), which is related to the discussion above. The main point here is that QR must be maintained as the ambiguity found in such example as (33) is not predicted only by a feature-checking theory (Tabata (1997)):

(33) Some agency intends to send aid to every Bosnian city this year.

Tabata also cites Saddy’s (1991) data from Indonesian in (34), noting that yang which is obligatorily affixed to a moved WH-expression gives rise to an ambiguity (ibid.):

(34) a. Setiap orang men-cintani siapa (every < who)
 every person loves who
 ‘Who does every person love?’

b. Setiap orang tabu apa yangi Tom belo ti (every > what, every < what)
 every person knows what Tom bought
 ‘What does every person know Tom bought?’

Tabata hypothesizes that quantifiers can be classified into two types: a type which morphologically embodies the quantificational feature [+Q] (e.g., setiap orang, apa yang) and a type which does not (e.g., siapadu). Moreover, a scope ambiguity arises only when the same type of quantified NPs cross as a result of QR or (LF) WH-raising.
This scope interpretation theory accounts for the data in Japanese and English (ibid.):7

(35) a. Daremo-o dareka-ga ti semeta.4 (every > some, every < some)
 ‘Someone blamed everyone.’

b. Nani-oi daremo-ga ti kaimusita ka? 9 (what > every)
 ‘What did everyone buy?’

As shown in (35a), crossing of two QPs after scrambling gives rise to an ambiguity. However, crossing of a quantifier and a WH-expression in (35b) has no such consequence. Tabata maintains that the Japanese focus particles ka and mo are quantificational elements.10

Now, as (36) shows, in English, crossing of a WH-expression and a quantifier gives rise to ambiguity (ibid.):

(36) What did everyone buy t for Max? (what > every, what < every)

Tabata insists that English WHs bear the quantificational feature [+Q] as in (37) below following Chomsky (1964) and Klima (1964) and then (36) is explained in much the same way as the data in Indonesian and Japanese (ibid.):

(37) a. wh + someone [+Q] □ who
b. wh + something [+Q] □ what

It is clear that Tabata introduces a new perspective into the discussion of scope interpretation to add to the two main positions, that which relies on QR, and that which insists on the adequacy of the newly developed feature-checking theory. To go more deeply into the lexical properties of quantifiers themselves would, in my view, be one effective route for future study in this area in that it takes non-syntactical aspect of language into consideration. One point should be pointed out before closing this section.

It concerns the analysis in (37). If we make use of the example in (35a), the natural implication from it is that dareka-ga is equivalent to someone:

(38) someone = dare - ka - ga □ q.

Assuming that dare is equivalent to who for the time being. The focus particle ka has been assumed to be a quantificational element already in this discussion, and the particle ga carries a

7 In (35) dare, nani are roughly equal to who, what respectively. Concerning ka and mo, see footnote 6 in chapter 2. -ga and -o indicate [+Nom] and [+Acc] respectively.
8 For a problematic aspect for this sentence, see (24) and (25) in chapter 2.
9 This sentence also has some problems, but I do not go in detain for it here.
10 As is maintained later in this section, not only focus particles like ka and mo, but also case particles like -ga and -o are quantificational elements (Q-elements).
case feature [+Nom]. In English, case is determined by position in a sentence, whereas, in Japanese, it is indicated by (case) particles _ga_ [+Nom] and _o_ [+Acc]. Therefore, (38) can be generalized as in (39):

(39) someone = dare - ka - ga/o [p][+Nom][+Acc] □ q.

In addition, since _someone_ is a quantifier, (39) should be interpreted as in (40):

(40) someone □ [+Q]
 dare - ka [+Q] - ga/o □ [+Q]

Since _someone_ bears [+Q], _dare-ka-ga/o_ should also bear [+Q] as a whole. Next, the examples in (41), (42) can be drawn:

(41) a. dare - ga mado - o kowashita no?
 who window broke inter.
 ‘Who broke the window?’
 b. dare - o mat -teiru no?
 whom wait-ing inter.
 ‘Who are you waiting for?’
(42) dare - ga/o ~ -no = who/whom

Here, if we follow Tabata in supposing that English WH bears [+Q], (42) can be analysed as in (43):

(43) dare - ga/o ~ -no = who/whom
 [+Q] [+Wh] [+Wh] [+Q]

According to the discussion in 2.2, Japanese WHs do not carry [+Wh] in themselves. We must think from (43) that _ga/o_ carry a [+Q] feature. On the other hand, _who/whom_ have both [+Wh] and [+Q]. However, in this stage, [+Wh] is a dominant feature.

Then, if the result in (43) is applied to (40), (44) can be drawn:

(44) [[dare ~ -no] - ga/o] ka = [who/whom] [+Q] = someone
 [[+Wh] [+Q]] [+Q] [+Wh][+Q] [+Q] [+Q]

If we conclude that Japanese case particles are also quantificational elements and that English quantifiers include a [+Q] feature which is brought about by case and a [+Q] feature which is brought about by something like Japanese _ka_, it is reasonable to relate scope with case.

The point here is that the outward [+Q] is a dominant feature which is brought about by _ka_ in Japanese, and by being lexicalised in _someone_ in English. Not that _someone_ only bears [+Q], or rather that it bears [+Q] as a most distinctive feature, and its inner structure is rather complex.

The difference of this analysis to Tabata’s in (37) is now obvious.
Chapter 4
Revisiting GB

4.1. On May’s (1985) Approach

In this chapter, I will start from a reconsideration of May’s (1985) approach which we examined in chapter 1.

A first point to note is that the relation between S-adjunction and VP-adjunction is not always clear. As long as the two adjunction possibilities are licensed, it is necessary to consider both of them for even a basic example like (7a) in chapter 1, repeated in (1):

(1) a. John saw everyone

When comparing these two legitimate LF structures, the only difference is only that everyone in (b-2) is closer to its trace than in (b-1), i.e., the movement in (b-2) is more economical. To consider the implications of this, let us look at some examples from Japanese:
(2) a. soko-ni i-ta minna-o John-wa mi-ta
 there be-past everyone-acc top see-past
 ‘John saw everyone who was there.’
 b. John-wa soko-ni i-ta minna-o mi-ta

Compared to (2b), (14a) places emphasis on monna-o, and requires a special context concerning object for it to appear natural. Therefore, it can be said that (2a) is the marked case, and (2b) is the unmarked case. Now, both (2a) and (2b) are realized as distinct surface forms in Japanese, but conceivably this interpretive difference might hold between (1b-1) and (1b-2). Specifically, we might suppose:

(3) a. The number of the legitimate LF-representation for a sentence correlates with the number of the interpretation, each of them is directly drawn from the syntactic characteristics it represents.
 b. The LF-representation which contains more economical movement of a constituent(s) requires the unmarked reading. The LF-representation which contains less economical movement requires the marked reading.

Next, consider (4):

(4) a. Every student admires some professor

\[S' \]
\[S_1 \]
\[NP \]
\[S_2 \]
\[some \text{ professor} \] NP
\[S_3 \]
\[every \text{ student} \] NP
\[VP \]
\[ei \]
\[V \]
\[NP \]
\[admire \]

\[-o \] is a case particle [+Acc], \[-wa \] is a focus particle [+Top], although John is [+Nom] in this case.

This does not mean that the position of minna-o in (2a) is identical to that of NP in (1b-1), and John-wa to NP, and also John-wa in (2b) to NP, in (1b-2) and minna-o to NP. The point here concerns the relative distance of each phrase from a predicate.
Following the analysis in the previous section, both of these two representations are legitimate: in each case e_i and e_j are A'-bound and properly governed, and following the assumption in (3a), the sentence (4a) has two interpretations which correspond to the legitimate LF-representations in (4b-1) and (4b-2) respectively. From (3b), since the *every*-phrase and the *some*-phrase are minimally moved in (4b-2), this structure yields the unmarked interpretation. Next, we have to examine the difference between the marked and unmarked reading in (4b-1) and (4b-2). I will pursue this by using Japanese data where we find distinct word order. To obtain as exact Japanese counterparts for (4a) as possible, we have to first look closely at the English quantification in this sentence.

Assuming that the function of *every* has two poles; the primary one which focuses on each member in a group (F1) and the secondary one which takes all members in a group into its view (F2). Therefore, *every* is ambiguous as a result between F1 with F2 and F2 on F1: in the former F1 is primary functioning, but F2 is still functioning secondary, whereas, in the latter F2 is foregrounded on the presupposition of F1. F1 with F2 is the primary function, and F2 on F1 is the secondary of *every*. While in F1 with F2 *every* focuses on each member (F1) with assuming the whole member, in F2 on F1 *every* comes to work primary to take all members into one (F2).

Assuming that \{X_1, X_2, X_3, X_4\} is the set of entities which is specified by the *every*-phrase, and \{Y_1\} is an entity which is specified by *some*-phrase, we can have the same property of four relations from X_i to Y, say *admires*, since *some* picks out one entity Y_i from a domain supposed irrespective of identity. That is, \{Y_1\} is multiplied to \{Y_1, Y_1, Y_1, Y_1\} to be interpreted in one to one relation with the entities in the set \{X_1, X_2, X_3, X_4\} respectively. As a result, two types of set are obtained depending on the interpretable possibilities of identification: the one is \{Y_1, Y_1, Y_1, Y_1\}, and the other is \{Y_1, Y_1, Y_1, Y_1\}. The former gives the distribute reading. On the other hand, in the latter case, \{Y_1, Y_1, Y_1, Y_1\} is further processed up to \{Y_1\}, and as a result, new one to one relation is produced between the entire set \{X_1, X_2, X_3, X_4\} and \{Y_1\}. This is the reasonable assumption when considering the data where an object is identified already as in
(5):

(5) Every student admires Prof. Smith.

Here, there is no possibility of multiplying Prof. Smith as \(\{\text{Smith}_1, \text{Smith}_2, \text{Smith}_3, \text{Smith}_4\}\) because Prof. Smith is a unique entity; the only possibility is for all students to admire a certain professor. Thus, no ambiguity occurs in this case. Now, each and all can be related to every, since each does not have the F2, it can not be developed into F2 on F1, on the other hand, all strongly focuses on F2, so it does not have the interpretive possibility of F1 with F2.

Next to do is to obtain Japanese counterparts of (4a). The points will be that sentence structure is as similar as possible, that subject bears ambiguity depending on whether it focuses on each member or entire group, and that object is affected by it. On these conditions, the candidates are obtained in (6), though none of them completely overlaps with (4a).\(^1\) The symbol \% suggests that there should be some modifier in this position to make a phrase following it natural.\(^2\)

(6) a. % gakusei-tachi-wa % dono-kyojyu-ka-o sonkeishi-teiru
 (the) student-s-top which-professor-inter-acc admire

b. % gakusei-tachi-wa mina % dono- kyoju-ka-o sonkeishi-teiru
 (the) student-s-top all which-professor-inter-acc admire

c. % gakusei-tachi-wa mina sorezore % dono-kyoju-ka-o sonkeishi-teiru
 (the) student-s-top all respectively which-professor-inter-acc a dmire

d. (%) gakusei-wa mina (kanarazu) dare-ka-kyojyu-o sonkeishi-teiru
 student-top all (necessarily) who-inter-professor-acc admires

(7) % dono-gakusei -mo (kanarazu) dare-ka-%- kyoju-o sonkeishi-teiru
 any -student -too (necessarily) who-inter%-professor-acc admires

The first difficulty when considering Japanese counterparts of an English quantified sentence like (4a) is the difference between the two languages concerning the relation between expressions and contexts. That is, without any context, QPs in (4a) quantify directly over the domain as the whole world (D0); however, whether the domain is pragmatically specified (D1)

\(^1\) (6a) is the counterpart of the sentence (1), but it is closely related to (6b,c,d).

\(^2\) The examples for modifiers are as follows:

for (6a,b,c): sono-gakubu-no gakusei-tachi-wa mina (sorezore) that -department-of

same -department-of

for (7): sono-daigaku-de-wa dono-gakusei-mo (kanarazu) that -university-in-top

dare-ka-jibunno-daigaku-no-kyojyu-o sonkeishi-teiru who -inter-his -university-of-professor-acc
Yoshiko Umemori

or not (D0) affects linguistic realizations of the QPs, or sometimes other parts of a sentence in Japanese.

For example, (6a,b,c) and (7) are specific descriptions because they have the QP types (gakusei)-tachi or dono-(gakusei) as subjects, followed by the focus particles -wa and -mo respectively, which implicitly refer to a domain D1 in themselves.⁵ and need some modifier to be natural or explicit in the position indicated by % which specifies which D1 they quantify in more detail, although such modifiers can be omitted if the domain is definitely clear from a context. In this case, it is more natural or an unmarked description to have the QP types as objects which also quantify over D1, dono-(kyojyu)-ka in (6a,b,c) and dare-ka-%-(kyojyu) in (7),¹⁶ rather than the QP type which quantify over D0, dare-ka-(kyojyu) in (6d) and (7), as object.¹⁷

On the other hand, (6d) and (7) are generic descriptions. Unlike gakusei-tachi, the bare NP gakusei in (6d) identifies only the set which contains all elements which all share the property gakusei, and does not notice the inside of this set, so that it can easily quantify over D0, so that it does not necessarily require any modifier which indicates a D1.¹⁸ Equally, however, this bare NP can quantify over D1 with some modifier, for example, corresponding to (6d), we have:

(8) sono-kuni-no-gakusei-wa mina (kanarazu) dare-ka-kyojyu-o sonkeishi-teiru
 that-country-in-student-top

In (8) all objects in the country which instantiate the property gakusei are quantified.

A second difficulty is the difference between the two languages concerning scope. In the examples in (6) and (7), the phrase(s) which takes wide scope are underlined. To examine scope interactions in (6) and (7), I will make use of figures for convenience.¹⁹ First examine the example (6a):
(6a)'

D0 is the domain as a whole world, and D1 is a pragmatically restricted domain, we might suppose the department in this case. \(x_1, x_2, x_3, x_4 \) are all students and \(y_1, y_2, y_3, y_4 \) are all professors in the department. The arrow expresses the relation *admire* from the students to an arbitrary professor \(y_x (1 \leq x \leq 4) \). The fundamental function of "wa" is to pick out a particular element from D0 as a subject to describe, and we call this element a topic T.\(^3\) Thus, a binal distinction is drawn between the topic T and the class of all other elements in D0, and we can call this class the non topic \(-T\). The important point in [1] above is that it is the entire set \(X \{ x_1, x_2, x_3, x_4 \} \) that is picked out as a topic T as is indicated by bold circle, and since "wa" does not pay attention to anything other than this distinction, the elements of the set X are not focused individually. On the other hand, the *dono*-phrase picks out an arbitrary element \(y_x \) from the set \(Y \{ y_1, y_2, y_3, y_4 \} \). In fact, it is not correct to say that an arbitrary element \(y_x \) is picked out by the *dono*-phrase in that the value of \(x \) in \(y_x \) is determined in the actual state where the sentence (6a) is used. It is just the case that a speaker does not know, or needs to pretend not to know, its value, but only knows that there is an element within the set Y which has the relation *sonkeishi-teiru* with members of the set X, so that a hearer has no choice other than to interpret the value of \(x \) in \(y_x \) as arbitrary \((1 \leq x \leq 4)\). In other words, [2] suggests the non-identification of the element concerned as is indicated by the bold \(x \) on the presupposition that there is a certain element to which members of the set X have the relation *sonkeishi-teiru*. Thus, the entire set X is connected by the relation *admire* to an arbitrary element \(y_x \) in the set Y in one (as a whole) to one relation, and (6a) is only interpreted with the *dono*-phrase having wide scope.

\(^3\) When an element is picked out directly from D0, this topic is a subject.
The expression *mina* has the function of identifying the inside of the set as is indicated by the bold circles in [2]. As a result, *y* which is an arbitrary element of the set \(Y \{ y_1, y_2, y_3, y_4 \} \) (see (6a') [2]) is multiplied to the set \(Y' \{ y_x, y_x, y_x, y_x \} \) as the first step in [3]-1 so that each member of the set \(X \{ x_1, x_2, x_3, x_4 \} \) can correspond to an element of \(Y \). Now we have two possibilities for value assignment for \(x \) in every \(y_x \) in the set \(Y' \): one where all values of \(x \) in the set \(Y' \) are not identical, the other, where they are in [3]-3. This latter type can be further schematised as in [3]-3', which represents a one (as a whole) to one relation between \(X \) and an element of \(Y \). The former [3]-2 corresponds to a distributive reading on the subject, and the latter [3]-3 to a collective one. However, the latter is weaker than the former because of *mina*. Thus, (6b) is ambiguous between distributive and collective readings.

21 That is, *mina* is different from *all* as is mentioned already in connection with the analysis of *every* because *all* focuses on the entire as is made up of each member, although I assigned *all* to *mina* in (20b,c,d).
In this case the ambiguity found in (6b,b') does not arise because the expression sorezore works to prevent the process of [3]-3' in (6b') from taking place, and also prevents the elements of the set X being treated as one unit. Although (6c) does not completely exclude the collective reading, since this reading is more economically done by (6a), the distributive reading in [4]-2 is the unmarked reading for (6c).

The bare NP gakusei designates all elements in D0 which share the property gakusei, and -wa picks out these elements as one unit, the set X {x|x has the property gakusei} in [1]. As already discussed, each element in the set X is focused by mina in [2]. On the other hand, the dare-ka-phrase picks out an arbitrary element y, as object from the set Y {y|y has the property...}
kyojyu} which is obtained by the bare NP kyojyu in [3]. Unlike for (6a’), it is correct to say that an arbitrary element y_i is picked out by the dare-ka-phrase because nothing is determined in the actual state where the sentence (6d) is used except that there exists the infinite number of element which share the property kyojyu in D0. It is the case here that a speaker concentrates on affirming that there is such an element in the set Y as to which the relation sonkeishi-teiru holds from an element in the set X, therefore, the value of x in y_i does not the matter. In other words, [3] suggests the affirmation of being of an arbitrary element within the set Y as is indicated by bold circle to which the relation sonkeishi-teiru can hold on the presupposition that there exists infinite number of elements as candidates for this status. Thus, an arbitrary element y_i in [3] is multiplied so that each element in the set X can have one to one relation in [3]-1. In this case the value assignment for x of each y_i does not occur because the value for x in y_i does not the matter here. Therefore, only the reading where gakusei-phrase has wide scope in [3]-1 is attained.

(7)’.

The dono-phrase in [1] picks out an arbitrary element p_i from the set P {p|p has the property gakusei} in a D1 which is quantified by the bare NP gakusei with the expression which suggests the D1. It is correct to say that an arbitrary element p_i is picked out by dono-phrase because it is determined in the actual state where the sentence (7) is used that every element in the set P has the relation sonkeishi-teiru to an arbitrary element q_j in the set Q {q|q has the property kyojyu} in the D1. It is the case in [1] that a speaker knows that every element in the set P can be picked out, but focuses on one being in the set P as is indicated by bold circle and non-identifies (arbitrarize) it as is indicated by bold x so that a hearer can assign any value to it

22 It is also possible that dono-phrase to quantify over the set which is quantified by the NP gakusei-tachi with the modifier which suggests the D1 when you think you have the grasp of every member in the D1 to a large extent.
within D1. A focus particle -mo works to add up all values for x within the D1 to x one by one. Thus, an arbitrary element q in the set Q is picked out and connected by the relation sonkeishi-teiru to an arbitrary element p in the set P one by one. However, also in this case a speaker concentrates on affirming that any p has such an element in the set Q as to which the relation sonkeishi-teiru holds, so that the value assignment for x in q does not occur since the value of x in q is not the matter. That the process in [3]-2 and [3]-3 in (6’) does not occur means distributive reading is unmarked irrespective of identity. However, it also means that there is a possibility for all to have common person whom they admire accidentally, especially in a restricted domain. Thus, the sentence (7) is considered as almost unambiguous with just a possibility for collective reading.

We have been examining Japanese counterparts of (4a) so far. What we have to do now is to explore how the relative distance of the QPs from a predicate affects the interpretation in (3b). (6b) is suitable for this examination because it is the only example which is ambiguous, although (6a) or (6c) are preferred as realizations of its two readings. Compare, then, (6b) and (9), where (9) is a linear variance of (6b):

(9) % dono-kyojyu-ka-o % gakusei-tachi-wa mina sonkeishi-teiru

The difference here is that which is we can see in the LFs (1b-1) and (1b-2), and there is emphasis on dono-kyojyu-ka-o in (9) requiring a special context to make this sentence appear natural. Importantly, it also seems that the wide scope reading for the dono-phrase is slightly dominant, contrary to the case in (6b). Let us consider here the relation between the phenomenon which we see in scrambling in Japanese, reordering of constituents in surface form, and two legitimate LF-representations for a surface sentence in English. Assuming that (6b) and (9) are almost equivalent to two legitimate LF-representations for (4a), that is (4b-2) and (4b-2) respectively, neither of them disambiguates (4a), but the scope dominance relation changes in (6b) and (9). From this, we can perceive some related implications: (…) quantifiers can take scope over a sentence freely from any adjunct position, since in either type of LF-representation (4b-2) or (4b-1), instantiated in a Japanese surface structure (6b) or (9), the c-commanded QPs are not blocked to take wide scope (…) especially, the former means the unavailability of the notion government (…) but scope dominance relation is changed, when word ordering of constituents is changed, scrambled (…) and a c-commanding QP dominantly requires a wide scope reading.

Two things are pointed out here. Firstly, when looking at the examples in (6) and (7), the wide scope reading for a c-commanded phrase is not necessarily blocked as in (6a) and (6b), but we can suppose that there is a tendency for a c-commanding phrase to take scope over, say
subject-object asymmetry. Secondly, when an unscrambled version is (almost) unambiguous, its scrambled version is still unambiguous, and there is no change in scope dominance relation. For example, the scrambled version of (6c) in (10) has only the same reading with (6c):

(10) dono-kyoju-ka-o gakusei-wa mina sorezore sonkeishi-teiru

Accordingly, (3b) is revised as follows:

(3)b’. The LF-representation which contains more economical movement of a constituent(s) requires the unmarked reading. The LF-representation which contains less economical movement requires the marked reading. This difference changes dominance relation of scopes of moved constituents when they are QPs.

This observation conforms with the observation in the examples (21) (22) and (23) in chapter 2.

From this, we can conclude that two types of LF-representation in (4b-1) and (4b-2) do not disambiguate a sentence, nor does c-command relation, although they tell a strong tendency for scope relation. Lexical information like that which we examined in some and every, information from other parts in a sentence, say mina and sorezore in Japanese, or from perceptual relation determine ultimate interpretation. On the reason that to have (4b-1) and (4b-2) does not contribute to disambiguate a sentence, and that (4b-2) is canonical, I only use the type (4b-2) from now. Let us go on to the next example (9a) in chapter 1, repeated in (11):

(11) a. What did everyone buy for Max?
 b.

25 ‘almost’ means that as all examples in (6) and (7) are closely examined later in this section, (6d) and (7) slightly allow the wide scope reading for the c-commanded phrases. In this case, we get the wide scope reading after scrambling for them c-commanding slightly easier, not to say it is dominant.
The WH-phrase can not adjoin to VP, and move to COMP in the syntax, because WHs in English bear the interrogative property [+Wh] and this feature is not allowed to stay within S. We have examined in the section 2 in chapter 2 and in chapter 3 that Japanese WHs do not bear [+Wh], as are felicitously classified as indeterminate pronouns, and also that the combination of a WH-expression and an interrogative complementizer ka which bears [+Wh] occupying interrogative Comp on the right boundary is equivalent to a WH-expression in English. On this reason, WHs in Japanese do not need to move in the syntax as is shown in the examples (15) (17) in chapter 2, contrary to the case in English.

That is, (11a) (= (9a) in chapter 1) has only one LF-representation in (11b) (= (9b) in chapter 1. Following May (1985) and the discussion so far in this section, (11b) shows only that both what and everyone share the same absolute scope domain S′ within which their scopal properties can freely interact.

Next, to see how their scopes interact, we apply the same process to (11b) which we tried in the example (4a), given that what also picks out an arbitrary from D0. The difference between some and what is that the value of x in Y is affirmed or questioned. That is, (11a) is also ambiguous where either of everyone or what can take scope over the other. Let us examine the example (10) in chapter 1, repeated in (12):

(12) a. Who bought everything for Max?
 b.

26 As we will examine later in this section, morphology greatly contribute to disambiguate sentences in Japanese.
This legitimate LF-representation also says only that who and everything can take over the sentence, and interact their scopes freely. The problem here is how their scopal interactions are determined. Contrary to the case in (4) and (11), the every-phrase occupies the object position. Applying the same sort of process to (12b) as in (4b) and (11b), since who picks out one arbitrary element from D0, everything only interpreted as F2 on F1 from the first, that is, treated as one unit according who, and no multiplication for every-phrase occurs. It will be possible to say that we can also see subject-object asymmetry here. However, the situation is not so simple when we consider the ambiguity in the sentence in (13) below:

(13) Somebody loves everybody

In (13) the subject some-phrase is multiplied according to the interpretation of object every-phrase. Now we can give a explanation for this fact by using the results in the comparison of (6b) and (10) above. Fundamentally, possibly conceptually, interpretation of subject has a dominancy for that of object taking the wide scope reading dominantly. However, a English constituent structure can allow for a bit more dominance for object than in Japanese and Chinese. I assume that, supporting Aoun & Li (1989), this is because English subject is, possible reconstructed in lower position than in Japanese and Chinese, where subject-object enjoys more logical relation, rather than perceptual relation. However, when a subject WH-expression is moved to Comp in (12) higher than its canonical position in (13), subject in English regains its original dominancy again. Next consider the example (11) in chapter 1, repeated in (14) below:

(14) a. Every pilot hit some MIG that chased him.
 b-1.
b-2.

According to the discussion so far, only (14b-2) is made use of as an LF-representation for (14a), and in this LF-representation the every-phrase and the some-phrase take scope over the entire sentence, and interact their scopal properties freely within it. How their scopal properties interact is the same as in (4a), and then the pronoun him is interpreted depending on it.

(15) a.

27 I assume that subject in Japanese and Chinese occupies a high position enough to enjoy perceptual dominancy, although it is lower than Comp. Especially, in Japanese Comp is a position for object to have marked reading.
When every pilot in the set $P\{p_1, p_2, p_3, p_4\}$ hit a MIG in the set $M\{m_1, m_2, m_3, m_4\}$ respectively in (15a)[1] (distributive reading), each MIG in the set M could have chased the pilot in the set P which later hit it in (15a)[2]. In this case the pilot can be referred to by him because the pilot is a single entity and the pronoun him can only refer to a single entity. In other words, there are four pilots in this situation, but there is one pilot in terms of each MIG as an object to chase in a range of each MIG.

On the other hand, when the pilots in the set P hit the same MIG in (15b)[1] (collective reading), the MIG could not have chased the pilots in the set P because it is impossible for one entity to chase more than one entity at the same time, but could have chased another entity h_1 in (15b)[2] which existed in the same context, but is not directly mentioned by the sentence (14a). While in the former case the pilots in the set P can not be referred to by him because they are not a single entity, although it is a single unit, in the latter case another entity can be referred by him because it is a single entity. Let us go on to the example (12) in chapter 1, repeated in (16):

28 The pilot means p_1 for m_1, p_2 for m_2, p_3 for m_3, and p_4 for m_4.
29 At this stage, the pilots in the set P are considered only as one unit, and they can not be focused distributively anymore. Therefore, it is impossible to refer to them as him.
30 The one to one relation can not hold in this case as a pure phenomenon nor as a phenomenon conceptually re-interpreted.
(16) a. Some pilot who shot at it hit every MIG
 b. In this LF-representation the *some*-phrase and the *every*-phrase take scope over a sentence, and their scopal properties can interact freely within it.

(17) As explained already in (12), when the quantified subject is not ambiguous with only a single entity reading, the quantified object which is ambiguous between whether the elements can be treated as one unit or not is treated only as one unit from the first, and a one to one relation is established at this point in (17)[1]. Therefore, the pronoun *it* cannot refer to every MIG anymore because it is not a single entity, although it is a single unit, and thus has to refer to another entity in the context which is not mentioned directly in the structure. Finally, let us consider the example (13) in chapter 1, repeated in (18):
(18) a. Which pilot who shot at it hit every MIG that chased him?
b.

In this LF-representation the *which*-phrase and the *every*-phrase take sentential scope, and can interact their scopal properties freely within it.

(19)

In the same way as in (16), since the quantified subject *which*-phrase is not ambiguous with only the reading as an arbitrary entity p₁ in [1]-1, *every*-phrase is treated only as one unit from the first, and then one to one relation is established in [1]-1. Therefore, we have no possibility to interpret *it* as referring to *every*-phrase because it is one unit, not one entity, but the possibility to interpret *it* as referring to another entity in the same context which is not directly mentioned by the sentence (18a) in [1]-2, i.e. Also, when *which pilot* hit *every MIG* in [1]-1, *every MIG* could have chased a same person him₁ in [2]. This him₁ can be p₁, because him₁ refers to one entity and p₁ is one entity. Therefore, *him* can refer to *which pilot*.

Yoshiko Umemori

160
4.2. Concluding Remarks

I have concentrated on examining May’s (1985) framework in the last chapter. It resulted in adding a revising, but this revision is crucial in that the two types of LF-representation which are supposed by May to disambiguate scopal interactions do not ultimately do the work. However, this line of approach still has insights for the study of this area, especially, that the notion adjunct can be made use of as to make it possible for QPs to take sentential scope from its position. I will be possible to think that as much the same way that WH-expressions have the special position to occupy, Comp, quantified phrases also have some different position to occupy from non quantified phrases. However, I also had some conclusion in chapter 3 to the effect that it is reasonable that quantifier’s scope can be related to case, specifically, case-checking operation. This supports the Minimalist approach. It will be my future research to seek for a possibility to integrate these two lines of approach.

Bibliography

 Keyser (eds.) The View from Building 20, Cambridge, Mass.: MIT Press.
 Stechow, W. Sternefeld, and T. Vennemann (eds.) Syntax: An International
 Handbook of Contemporary Research, Berlin: Walter de Gruyter.
 Epstein et. al. (eds.) Minimal Ideas, Amstredam: John Benjamins.
Klima, E. (1964) ‘Negation in English,’ in J. A. Fodor and J. J. Katz (eds.) The Structure of
 Mass.: MIT. Reproduced by the Indiana University Linguistics Club (1982), Bloomington.